Default priors for Gaussian processes
نویسندگان
چکیده
منابع مشابه
Default Priors for Gaussian Processes
Motivated by the statistical evaluation of complex computer models, we deal with the issue of objective prior specification for the parameters of Gaussian processes. In particular, we derive the Jeffreys-rule, independence Jeffreys and reference priors for this situation, and prove that the resulting posterior distributions are proper under a quite general set of conditions. A proper flat prior...
متن کاملDEFAULT PRIORS FOR GAUSSIAN PROCESSES By Rui Paulo
Motivated by the statistical evaluation of complex computer models, we deal with the issue of objective prior specification for the parameters of Gaussian processes. In particular, we derive the Jeffreys-rule, independence Jeffreys and reference priors for this situation, and prove that the resulting posterior distributions are proper under a quite general set of conditions. Another prior speci...
متن کاملLocation Reparameterization and Default Priors for Statistical Analysis
This paper develops default priors for Bayesian analysis that reproduce familiar frequentist and Bayesian analyses for models that are exponential or location. For the vector parameter case there is an information adjustment that avoids the Bayesian marginalization paradoxes and properly targets the prior on the parameter of interest thus adjusting for any complicating nonlinearity the details ...
متن کاملThe Rate of Entropy for Gaussian Processes
In this paper, we show that in order to obtain the Tsallis entropy rate for stochastic processes, we can use the limit of conditional entropy, as it was done for the case of Shannon and Renyi entropy rates. Using that we can obtain Tsallis entropy rate for stationary Gaussian processes. Finally, we derive the relation between Renyi, Shannon and Tsallis entropy rates for stationary Gaussian proc...
متن کاملDefault priors for Bayesian and frequentist inference
We investigate the choice of default priors for use with likelihood for Bayesian and frequentist inference. Such a prior is a density or relative density that weights an observed likelihood function, leading to the elimination of parameters that are not of interest and then a density-type assessment for a parameter of interest. For independent responses from a continuous model, we develop a pri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Statistics
سال: 2005
ISSN: 0090-5364
DOI: 10.1214/009053604000001264